剑11雅思阅读Test1passage1原文+译文:作物生长的“摩天大厦”

发布时间:2017-04-01 16:48

  新航道雅思给大家带来了剑11雅思阅读Test1passage1原文+参考译文,更多真题解析,请:剑桥雅思11阅读解析

  READING PASSAGE 1

  Crop-growing skyscrapers

  By the year 2050, nearly 80% of the Earth’s population will live in urban centres. Applying the most conservative estimates to current demographic trends, the human population will increase by about three billion people by then. An estimated 109 hectares of new land (about 20% larger than Brazil) will be needed to grow enough food to feed them, if traditional farming methods continue as they are practised today. At present, throughout the world, over 80% of the land that is suitable for raising crops is in use. Historically, some 15% of that has been laid waste by poor management practices. What can be done to ensure enough food for the world’s population to live on?

  The concept of indoor farming is not new, since hothouse production of tomatoes and other produce has been in vogue for some time. What is new is the urgent need to scale up this technology to accommodate another three billion people. Many believe an entirely new approach to indoor farming is required, employing cutting-edge technologies. One such proposal is for the ‘Vertical Farm’. The concept is of multi-storey buildings in which food crops are grown in environmentally controlled conditions. Situated in the heart of urban centres, they would drastically reduce the amount of transportation required to bring food to consumers. Vertical farms would need to be efficient, cheap to construct and safe to operate. If successfully implemented, proponents claim, vertical farms offer the promise of urban renewal, sustainable production of a safe and varied food supply (through year-round production of all crops), and the eventual repair of ecosystems that have been sacrificed for horizontal farming.

  It took humans 10,000 years to learn how to grow most of the crops we now take for granted. Along the way, we despoiled most of the land we worked, often turning verdant, natural ecozones into semi-arid deserts. Within that same time frame, we evolved into an urban species, in which 60% of the human population now lives vertically in cities. This means that, for the majority, we humans have shelter from the elements, yet we subject our food-bearing plants to the rigours of the great outdoors and can do no more than hope for a good weather year. However, more often than not now, due to a rapidly changing climate, that is not what happens. Massive floods, long droughts, hurricanes and severe monsoons take their toll each year, destroying millions of tons of valuable crops.

  The supporters of vertical farming claim many potential advantages for the system. For instance, crops would be produced all year round, as they would be kept in artificially controlled, optimum growing conditions. There would be no weather-related crop failures due to droughts, floods or pests. All the food could be grown organically, eliminating the need for herbicides, pesticides and fertilisers. The system would greatly reduce the incidence of many infectious diseases that are acquired at the agricultural interface. Although the system would consume energy, it would return energy to the grid via methane generation from composting non-edible parts of plants. It would also dramatically reduce fossil fuel use, by cutting out the need for tractors, ploughs and shipping.

  A major drawback of vertical farming, however, is that the plants would require artificial light. Without it, those plants nearest the windows would be exposed to more sunlight and grow more quickly, reducing the efficiency of the system. Single-storey greenhouses have the benefit of natural overhead light: even so, many still need artificial lighting. A multi-storey facility with no natural overhead light would require far more. Generating enough light could be prohibitively expensive, unless cheap, renewable energy is available, and this appears to be rather a future aspiration than a likelihood for the near future.

  One variation on vertical farming that has been developed is to grow plants in stacked trays that move on rails. Moving the trays allows the plants to get enough sunlight. This system is already in operation, and works well within a single-storey greenhouse with light reaching it from above: it is not certain, however, that it can be made to work without that overhead natural light.

  Vertical farming is an attempt to address the undoubted problems that we face in producing enough food for a growing population. At the moment, though, more needs to be done to reduce the detrimental impact it would have on the environment, particularly as regards the use of energy. While it is possible that much of our food will be grown in skyscrapers in future, most experts currently believe it is far more likely that we will simply use the space available on urban rooftops.

  作物生长的“摩天大厦”

  到2050年,近80%的地球人口将在城市中心生活。依据当前的人口统计趋势进行最保守的估计,那时人类将增加了约30亿人。如果继续像现在这样使用传统的农耕方法,那么需要大约10亿公顷新土地(大约比巴西国家面积大出20%)来生产足够的食物以供给他们。如今,纵观全世界,超过80%适合种粮食作物的土地在使用中。从历史经验来看,这其中大约15%因不合理的管理使用行为而被荒废。我们能够做些什么以确保有足够的食物来供养世界人口呢?

  由于室内种植番茄和其他作物已经时兴一段时间了,所以室内种植的概念并不新奇。

  新的问题是迫切需要按比例扩大这一技术来供养另外的30亿人。很多人相信通过使用技术,一种全新的室内农业方式是有必要的。“垂直农场”就是这样的一个提议。这一概念是在多层建筑中,粮食作物在环境可控的条件下生长。它们位于城市中心,意味着它们将大幅度减少把作物运送给消费者的运输量。垂直农场需要高效而低廉,从而方便建设和安全操作。支持者们称,如果成功实施,垂直农场会带来城市复苏的希望,持续提供安全多样的食物供应(通过整年生产所有谷物),并且最终修复由于水平农业而造成损害的生态系统。

  人类用了一万年去学习如何种植大部分作物,虽然如今我们视这些作物的种植为理所当然。在这期间,我们在大部分我们耕作的土地上大肆掠夺,经常将青葱自然的生态地带变成半干旱沙漠地带。在同一时间范围内,我们进化成为城市物种,其中60%的人口如今纵向分布居住在城市中。这意味着,对大多数人而言,我们人类享有自然的庇护,而我们将生产粮食的作物暴露于户外的严苛环境,除了寄希望于一年风调雨顺之外,再也无能为力。然而,通常由于快速变化的气候,情况并不常常如人意。每年都会出现大洪水、持续干旱、飓风以及强烈的季风夺取收成,数百万吨珍贵的作物被毁掉。

  垂直农业的支持者们认为这一系统有许多潜在的优势。例如,可以整年生产作物,因为它们生长在人工控制的、最理想生长环境中。不会由干早、洪水或害虫引起与气候有关的作物减产。所有作物可以有机自然地生长,不再需要除草剤、杀虫剂及肥料。系统将大大减少农业接触中一些传染性疾病的发生概率。虽然系统会消耗能量,但是它能通过作物不可食用部分的堆肥里生成的沼气将能量返还给系统网络。它也将通过减少拖拉机、犁和航运运输的需求从而大幅度减少化石能源的使用。

  然而,垂直农业的一个主要缺点在于作物需要人造光。没有人造光,那些距离窗户最近的作物将暴露在更多太阳光下并且更快地生长,从而降低系统效率。单层温室有天然的顶部光源的优势:即便如此,很多温室依然需要人造光。没有天然头顶光源的多层设施则需要更多的人造光。产生足够的光成本会过分昂贵,除非有成本低廉的可再生能源可以利用,而这是更像是一种对未来的展望,而并非有在不久的将来实现的可能性。

  垂直农场的一个已经发展成型的变化是在层叠式托盘上种植作物,这些层叠式托盘可以在铁轨上移动。移动托盘可以让植物可以获得足够的阳光。这种系统已经在运行状态中了,并且在顶部有光照的单层温室中运行良好:但是不确定是否在没有头顶自然光的情况下使它正常工作。

  垂直农业试图解决我们在为增长的人口生产足够食物时必然面对的问题。尽管如此,如今需要采取更多措施来减少它会对环境产生的有害影响,尤其是好比能源的使用。尽管未来有可能我们的很多食物将在“摩天大厦”中生长,然而在将来,我们的很多食物有可能是被种植在高楼大厦里,大部分现在相信利用在城市乡镇的屋顶上的可用空间来种植可能性更大。

 

  剑桥雅思真题系列下载:

  剑桥雅思真题11PDF+音频下载

  剑桥雅思10真题下载

  剑桥雅思真题9PDF+听力MP3下载 

  剑桥雅思真题8PDF+听力MP3下载

  剑桥雅思真题7PDF+听力MP3下载

  剑桥雅思真题6PDF+听力MP3下载

  剑桥雅思真题5PDF+听力MP3下载

  剑桥雅思4PDF文本+听力MP3下载

  上海新航道雅思培训班 ,一个盛产高分的摇篮!在这里,每120分钟,就有一个高分学员出自新航道!想和他们一起并肩成为学霸,赶紧加入我们吧!

试听预约 模考预约
相关阅读
更多
剑桥雅思真题11PDF+音频下载
05-10
剑11Test3雅思写作task2题目+范文
05-16
剑11Test1口语Part3范文-Different types of home
04-27
剑桥雅思11Test2口语Part1范文-Friends话题
04-27
剑11Test2口语Part2范文-a writer you would like to meet
04-27
剑11Test4雅思阅读Passage2参考译文-电影声音简介
04-27
相关课程
更多
雅思词汇语法班6-10人班
雅思词汇语法班6-10人班
 雅思强化6-10人班
雅思强化6-10人班
雅思全程6-10人班
雅思全程6-10人班
雅思冲刺6-10人班
雅思冲刺6-10人班